US009250982B2

a2z United States Patent (10) Patent No.: US 9,250,982 B2
Burgess et al. 45) Date of Patent: *Feb. 2, 2016
(54) AUTOMATICALLY DERIVING A COMMAND (52) US.CL
FOR STARTING A PROGRAM IN AN CPC oo, GOG6F 9/54 (2013.01); GOGF 9/4843

OPERATING SYSTEM OF A COMPUTER

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: George M. Burgess, Winchester (GB);
Grant J. Shayler, Eastleigh (GB); John
D. Taylor, Hursley (GB); Gary O.
Whittingham, Winchester (GB)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/487,147

(22) Filed: Sep. 16, 2014
(65) Prior Publication Data
US 2015/0007200 A1 Jan. 1, 2015

Related U.S. Application Data
(63) Continuation of application No. 13/855,990, filed on

Apr. 3, 2013.

(30) Foreign Application Priority Data
Apr.3,2012 (GB) evericireecceeeeecenn 1205955.6

(51) Imt.ClL

GO6F 3/00 (2006.01)

GO6F 9/44 (2006.01)

GOG6F 9/46 (2006.01)

GO6F 13/00 (2006.01)

(Continued)

(2013.01); GOGF 17/30477 (2013.01); GO6F
2209/482 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,277,857 B1* 10/2007 Balajietal. ... 704/270
7,898,679 B2 3/2011 Brack et al.
(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2002049495 A 2/2002
Jp 2006293582 A 10/2006
(Continued)
OTHER PUBLICATIONS

Loveland et al., “Testing z/OS: the Premier Operating System for
IBM’s zSeries server,” IBM Systems Journal, vol. 41, Issue 1, Mar.
2002, pp. 55-73. (abstract).

(Continued)

Primary Examiner — Diem Cao
(74) Attorney, Agent, or Firm — Yee & Associates, P.C.;
Parashos Kalaitzis

(57) ABSTRACT

A method for automatically deriving a command for starting
a program in an operating system of a computer, the method
comprising the steps of: identifying an address space pro-
vided by an operating system; identifying a program in the
address space; searching data logged by the operating system
as a result of processing the identified program to identify a
start command for initiating processing of the identified pro-
gram; and outputting the identified start command.

13 Claims, 3 Drawing Sheets

203 [Gotlect sob ID for the
running or completed
program in the
address space

205

Identify output
JESYSMSG dataset
fo tha program

identify outpist
JESJCL dataget far
the program

- “Anlyas igenthed
ds the
iatasets for the

US 9,250,982 B2

Page 2
(51) Imt.ClL FOREIGN PATENT DOCUMENTS
GO6F 9/54 (2006.01)
Got 948 (200601 I 2007140791 62007
GOF 1730 (2006.01) JP 2009070141 A 4/2009
(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS

2002/0078116 Al 6/2002 Aoki

2005/0132121 Al 6/2005 Robinson

2007/0074177 Al* 3/2007 Kuritaetal. 717/131
2009/0070455 Al* 3/2009 Cervantes 709/224

2011/0265091 Al
2013/0268947 Al

10/2011 Lyetal.
10/2013 Burgess et al.

GB search report dated Jul. 19, 2012 regarding application
GB1205955.6, applicant International Business Machines Corpora-
tion, 4 pages.

Office Action, dated Jun. 4, 2015, regarding U.S. Appl. No.
13/855,990, 24 pages.

* cited by examiner

US 9,250,982 B2

Sheet 1 of 3

Feb. 2, 2016

U.S. Patent

eil

G0l

v

£el \

oLl

901

N E
b4 rAY) 801 10}
/ [
/ /
/ / /
- Wid _ :\
/ L me@g,,m_ XX3Y
D 4808 E.,i so8dg 532ppY
AoLuan
sajid B0 7
L]
©83r
\ in
\ SO/z /
7 7)
% \ N

01

U.S. Patent Feb. 2, 2016 Sheet 2 of 3 US 9,250,982 B2

201 Program
identification
Request

202 ;
N identify

address space

¥

203 Coflect Jok 1D for the
] running or completed

program in the

address space

204 .
{arle N
task?
Y
205{\\ identify output
JESYSMSG dataset

for the program

20&2\\: identify output
JESJCL dataset for
the program

Analyse identified
207 datasets for the

- program {o derive
respective start

commands

3

208
N Qutput start
commands for

started task

209 X

End

Fig. 2

U.S. Patent

Feb. 2, 2016

301

30

-

Sheet 3 of 3

Derive Start
Command
¥

Open
JESYSMSG
fila

¥

Parse content to
identify program

name

30

30

[[L

3

Open JESJICL
file

¥
Parse identified
data to identify
pragram
parameters

4

306

[

Parse identified datla

{o identify assignment

statements for
program parameter

*

307

Reconstifue stan
command for Job
1D from identified

data

308

¥

End

Fig. 3

US 9,250,982 B2

US 9,250,982 B2

1
AUTOMATICALLY DERIVING A COMMAND
FOR STARTING A PROGRAM IN AN
OPERATING SYSTEM OF A COMPUTER

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/855,990, filing date Apr. 3, 2013, which
claims the benefit of priority to GB Application Serial No.
1205955.6, filed on Apr. 3, 2012, the contents of which are
hereby incorporated by reference.

FIELD OF INVENTION

The present invention relates to the automatic derivation of
a command for starting a program in an operating system of a
computer.

BACKGROUND OF THE INVENTION

In computer systems, in order to start a program on an
operating system, a series of start instructions are issued. Start
instructions vary between operating systems, but typically
involve a script in a file being processed. For example, in
Windows (Windows is a trademark of Microsoft Corporation
in the United States, other countries, or both), a scriptin a .bat
file starts programs. In IBM® z/OS® (IBM and z/OS are
trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide) programs may be
started by one or more instructions in a job control language
(ICL). In z/OS programs may also be started by the direct
input of a start command by a user and are referred to as
started tasks or jobs. When a program is started it is com-
monly assigned an address space in which to operate.

On larger computers, such as multiuser systems or main-
frames, there may be many programs running simultaneously
each having an associated address space. Programs may have
been started by many different users, at different times and
may remain active for days or months. In some situations it
may be desirable to stop or restart the programs in a selected
address space, for example, to clone the address space or to
enable the running program to be maintained with program
updates. However, in order to control a program in a selected
address space it is necessary to identify its start command.
Typically identifying the start commands for a set of address
spaces is performed manually since start commands cannot
generally be derived directly from the address space itself.
Thus deriving the relevant start commands is an error prone,
complex and often significantly time consuming operation.

SUMMARY OF THE INVENTION

An embodiment of the invention provides a method for
automatically deriving a command for starting a program in
an operating system of a computer, the method comprising
the steps of: identifying an address space provided by an
operating system; identifying a program in the address space;
searching data logged by the operating system as a result of
processing the identified program to identify a start command
for initiating processing of the identified program; and out-
putting the identified start command.

The searching may be performed only for individual user
started programs. The searching may be omitted for batch
programs. The program may be identified by a unique iden-
tifier. The identifier may comprise data indicating whether the
associated program is a user started program or a batch pro-

15

20

25

30

35

40

45

55

2

gram. The logged data may comprise a set of instructions
provided for initiating the processing of the program in the
address space. The set of instructions may be providedinajob
control language. The logged data may comprise a set of
processing messages reporting processing steps in the pro-
cessing of the program in the address space.

The method may further comprise the steps of: searching
the logged data to identify a set of parameters corresponding
to the start command; and outputting any identified set of
parameters in association with the identified start command.
The method may comprise the further steps of: searching the
logged data to identify the assignment of values to the set of
parameters; and outputting any identified parameters values
in association with the set of parameters.

The address space may be a virtual address space. The
processing of the program may be managed by a job entry
subsystem. The operating system may be z/OS.

Another embodiment provides apparatus for automatically
deriving a command for starting a program in an operating
system of a computer, the apparatus being operable to: iden-
tify an address space provided by an operating system; iden-
tify a program in the address space; search data logged by the
operating system as a result of processing the identified pro-
gram to identify a start command for initiating processing of
the identified program; and output the identified start com-
mand.

A further embodiment provides a computer program stored
on a computer readable medium and loadable into the internal
memory of a computer, comprising software code portions
arranged, when the program is run on a computer, for per-
forming a method for automatically deriving a command for
starting a program in an operating system of a computer, the
method comprising the steps of: identifying an address space
provided by an operating system; identifying a program in the
address space; searching data logged by the operating system
as a result of processing the identified program to identify a
start command for initiating processing of the identified pro-
gram; and outputting the identified start command.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by
way of example only, with reference to the accompanying
drawings in which:

FIG. 11is a schematic illustration of a computer comprising
an operating system; and

FIGS. 2 & 3 are flow charts illustrating processing per-
formed in the operating system of FIG. 1.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

With reference to FIG. 1, a computer 101 is loaded with an
operating system 102 and connected to a storage device 103.
The operating system 102 is arranged to provide a processing
platform for programs 104 stored in associated files on the
storage device 103. Data relating to the programs 104 is also
stored in data files 105 on the storage device 103. In the
present embodiment, the computer 101 is a mainframe com-
puter in the form of an IBM zSeries® (zSeries is a trademark
of International Business Machines Corporation, registered
in many jurisdictions worldwide) computer and the operating
system 102 is a mainframe operating system in the form ofthe
7z/OS operating system both from International Business
Machines Corporation.

The operating system 102 comprises a user interface 106
arranged, among other functions, to enable users to initiate

US 9,250,982 B2

3

the processing of one or more of the programs 104 on the
computer 101. In the present embodiment, the instances of
the programs 104 run by the computer 101 are referred to as
jobs. Processing of programs or jobs may be arranged to start
immediately in response to a user command or run in groups
of one or more as batch jobs at a predetermined time or in
accordance with a predetermined schedule. These two types
of job are thus referred to as started tasks and batch jobs
respectively.

The processing of a job is managed by a job entry sub-
system (JES) 107, which in the present embodiment, is a
component of the operating system 102. The JES 107 is
arranged, under user control, to receive jobs into the operating
system 102, schedule them for processing and to control their
output processing. Each job is provided with an address space
108 in memory 109 of the computer 101 in which to perform
its processing. In the present embodiment, each instance of a
program 104 is provided with a dedicated address space in
virtual memory.

The user interface 106 and the JES 107 are arranged to
enable a user to provide job-processing instructions to the
computer 101 via a scripting language called job control
language (JCL). The input JCL is processed by the JES 107 to
perform the instructed processing of the programs 104. The
JES 107 is arranged to produce a set of log files 110 for each
job that is processed under its control. The log files 110
comprise data describing the processing performed by the
computer in order to process the relevant job. One of the log
files 110 comprises a copy of the expanded JCL that was
executed by the computer in processing the associated job. In
the z/OS operating system 102 this log file is named JESICL..
Another of the log files 110 comprises data and messages
relating to the processing of the job, for example, details of
where programs were loaded from, allocation and de-alloca-
tion information, messages or statistics relating to how the job
was processed, reports on the success of the processing or
messages from the processed program itself. In the z/OS
operating system 102 this log file is named JESYSMSG.

In the present embodiment, the operating system com-
prises a program identification module (PIM) 111, which is
arranged, in response to a user command via the UI 106, to
derive a start command for the job running or completed in a
selected address space 108. In the present embodiment, the
PIM 111 uses an interfacing facility 112 in the form of a
REXX™ interface to access selected functions of a system
monitor program 113, in the form of the system display and
search facility (SDSF) of the zZ/OS operating system 102. The
PIM 111 is arranged to use the SDSF 113 to identify the
unique identifier that is assigned by the operating system to
the job being processed or that has completed processing in
the selected address space. In the z/OS operating system the
unique identifier is called a Job ID. The PIM 111 uses the
retrieved Job ID to search the log files 110 to identify the
location from which the relevant program was loaded and the
name of the program or procedure. The name of the program
provides the basis for the start command for the relevant
program. The PIM 111 is further arranged to search the log
files 110 to identify the input or output parameters for the

10

15

20

25

30

35

40

45

55

4

identified program and, where applicable, to identify any
assigned parameter values, that is, the values that were passed
to the program via the parameters on start-up. The PIM 111 is
then arranged to reconstitute a start command for the program
running in the selected address space.

The following code is an example of a z/OS program in the
form of a procedure named “EXAMPLE1:

JJEXAMPLEl PROC HLQ="XXX’,

J SOUT="*",

J PROJECT=P0’

J/STEP1 EXEC
PGM=TESTWTOR,MEMLIMIT=2G,REGION=0M

J/STEPLIB DD DISP=SHR,DSN=&HLQ..&PROJECT..LOAD

J/SYSPRINT DD SYSOUT=&SOUT.

JISYSIN DD DUMMY

J/PEND

In the present example, the processing of the procedure
EXAMPLE] is invoked using the following JCL start com-
mand, input to the JES 107 via the UI 106:

S EXAMPLE1 HLQ=USERHLQ,PROJECT=TEST

When the processing of the procedure EXAMPLEL1 is
started under the control of the JES 107, itis assigned a Job ID
and provided with an address space 108 in which to perform
its processing. In response to a user request to the PIM 111 to
derive a start command for the program running or completed
in the selected address space 108, the PIM 111 is arranged to
access the SDSF 113 via the REXX™ interface 112 to deter-
mine the relevant Job ID for the running program.

An example of the output of the SDSF 113 showing all
running programs in a selected set of address spaces is set out
below:

JOBNAME StepName Job ID Pos DP ASID ASIDX
CMASIT3A IYK2ZGV3 JOB52502 NS EE 84 0054
WUIIT4A IYK2ZGV4 JOB52505 NS C1 87 0057
EXAMPLE1 STEP1 STC09905 NS FO 317 013D

In z/O8, Job IDs are assigned in accordance with a prede-
termined protocol in which batch jobs are assigned a Job ID
with a prefix that starts with the letter J. In the example above,
the first two jobs are batch jobs and have Job IDs with the
prefix “JOB”. Started tasks are assigned Job IDs with a prefix
that starts with the letter S. In the example above, the third job
is a started task and has a Job ID with the prefix “STC”. The
output of the SDSF 113 also shows address spaces corre-
sponding to each job in the ASID column. In the present
example the address space of interest is 317, which corre-
sponds to a Job ID of STC09905. Since the Job ID begins with
the letter S the relevant program for the address space 317 is
a started task.

Once the PIM 111 has identified the relevant Job ID and
determined that it refers to a started task, the PIM 111 uses the
identified Job ID to search the log files 110. The following is
the result of the search of the log files 110 for the identified
Job ID:

DDNAME

DSName

JESJCLIN

JESMSGLG

JESICL

JESYSMSG
$SINTTEXT

IBMUSER.EXAMPLE1.STC09905.DOO0OOOO1.JESICLIN
IBMUSER.EXAMPLE1.STC09905.DOO0O0O002.JESMSGLG
IBMUSER.EXAMPLE1.STC09905.DOO0O0O0OO03.JESICL
IBMUSER.EXAMPLE1.STC09905.DOO00O004.JESYSMSG
IBMUSER.EXAMPLE1.STC09905.DOOO0O0O0O5. $INTTEXT

US 9,250,982 B2

5
The above search result provides the locations (DSName)
of'the JESMSGLG and JESICL log files for the identified Job
ID STC09905. The PIM 111 first inspects the JESMSGLG
file, which provides the following information:

2 IEFC001I PROCEDURE EXAMPLE1 WAS EXPANDED
USING SYSTEM LIBRARY USER.PROCLIB

4 IEFC002] INCLUDE GROUP SETC420 WAS EXPANDED
USING SYSTEM LIBRARY USER.PROCLIB

6 IEFC002I INCLUDE GROUP SETPARAMS WAS EXPANDED
USING SYSTEM LIBRARY USER.PROCLIB

8 IEFC0021 INCLUDE GROUP INITCTLG WAS EXPANDED
USING SYSTEM LIBRARY USER.PROCLIB

16 IEFC0021 INCLUDE GROUP CICSMAS WAS EXPANDED
USING SYSTEM LIBRARY USER.PROCLIB

IEF9651 START EXAMPLE1 WITH JOBNAME EXAMPLELI IS
ASSIGNED TO USER IBMUSER , GROUP TSOUSER

From line 2 of the statement of the above JESYSMSG log
file data the PIM 111 is arranged to identify the name of the
program, referred to here as a procedure, corresponding to the
Job ID. The procedure name “EXAMPLE]1” corresponds to
the basic start command for the procedure.

The PIM 111 then inspects the JESJCL file, which provides
the following information:

1 //EXAMPLE1 JOB MSGLEVEL=1

2 //STARTING EXEC EXAMPLE1,STRT=INITIAL
3 XXEXAMPLE1 PROC HLQ="XXX",

XX SOUT="*",

XX PROJECT="P0’

4 XXSTEP1 EXEC

PGM=TESTWTOR ,MEMLIMIT=2G,REGION=0M
5 XXSTEPLIB DD DISP=SHR,DSN=&HLQ..&PROJECT..LOAD
IEFC6531 SUBSTITUTION

JCL -ISP=SHR,DSN=USERHLQ.TEST.LOAD

6 XXSYSPRINT DD SYSOUT=&SOUT.

IEFC6531 SUBSTITUTION JCL - SYSOUT=*

7XXSYSIN DD DUMMY

8 XX PEND

STC09905

The PIM 111 is arranged to parse the PROC statement to
identify all the symbolic parameters and their default values,

if any. In the present example the following parameters will
be identified:

HLQ - XXX
SOUT - *
PROJECT - PO

The PIM 111 then parses the subsequent substitution mes-
sages, identified by the code IEFC653], to identify any sub-
stitutions made to the default values by the JCL. In this case
we can see from line 6 in the JESICL output above that the
SOUT parameter maintains its default value. From line 5 we
can see that both HLQ and PROJECT parameters have been
assigned new values. Therefore, the PIM 111 determines that
in the originating start command no value was specified for
the SOUT parameter and the HL.Q and PROJECT parameters
were assigned the values USERHLQ and TEST respectively.

A start command for a program in z/OS has the following
format:

/START TASKNAME,PARM1=VALUEL1,
PARM2=VALUE2

10

15

20

25

30

35

40

45

50

55

60

65

6

Thus, in the present example, the PIM 111 is able to derive
the following start command for the program running or
completed in the identified address space 317:

/START EXAMPLEL,HLQ=USERHLQ,
PROJECT=TEST

The processing performed by the PIM 111 when deriving
the start command for a program running or completed in a
given address space will now be described further with ref-
erence to the flow chart of FIG. 2. Processing is initiated at
step 201 in response to a user command input to the PIM 111
via the UI 106 and processing moves to step 202. At step 202,
the address space 108 indicated by the user is identified and
processing moves to step 203. At step 203, the Job ID is
inspected to determine whether or not it indicates a started
task and if so processing moves to step 204. At step 204, the
Job ID for the instance of the program 104 running or com-
pleted in the address space 108 is identified via the SDSF 113
and processing moves to step 205. At step 205, the
JESYSMSG data file for the Job ID is identified from the log
files 110 and processing moves to step 206. At step 206, the
JESICL data file for the Job ID is identified from the log files
110 and processing moves to step 207. At step 207, the iden-
tified datasets are analysed to identify the start command for
the identified program along with any parameters and
assigned parameter values and processing moves to step 208.
At step 208, the derived start command is output and process-
ing moves to step 209 and ends. If; at step 203, the Job ID
indicates that the job is not a started task then an error mes-
sage is returned to the user and the processing moves to step
209 and ends.

The processing performed by the PIM 111 in step 207 of
the flow chart of FIG. 2, when deriving the start command for
aprogram identified by a given Job 1D, will now be described
further with reference to the flow chart of FIG. 3. Processing
is initiated at step 301 and moves to step 302 where the
identified JESYSMSG file is opened and processing moves to
step 303. At step 303, the contents of the JESYSMSG file are
parsed to identify the name of the program 104 associated
with the Job ID and processing moves to step 304. At step 304,
the identified JESJCL file is opened and processing moves to
step 305. At step 305, the contents of the JESJCL file are
parsed to identify the parameters of the identified program
and processing moves to step 306. At step 306, contents of the
JESICL file are parsed further to identify any parameter val-
ues passed to the instance of the identified program and pro-
cessing moves to step 307. At step 307, the start command
including any identified parameters and assigned parameter
values is reconstituted and returned to the processing of step
207 in FIG. 2. Processing then moves to step 308 and ends.

In a further embodiment, the PIM is arranged to maintain a
list of the start commands relating to each of a predetermined
set or range of assigned address space. In other words, in this
embodiment, the start commands for a set of address spaces
that comprise started tasks or processes are pre-calculated.
The pre-calculated set of start commands may be updated
either in response to the assignment of a new address space or
by periodic checks for new address spaces. In other words, the
set of start commands for multiple systems or programs can
be obtained and then updated to take into account any changes
to existing systems and programs as well as the addition of
new systems.

In another embodiment, dedicated code is provided for
identifying the Job ID of the process running or completed in
a selected address space. Such dedicated code is provided in
place of the use of the SDSF via a REXX™ interface
described above. The dedicated Job ID identification code

US 9,250,982 B2

7

may be provided as a standalone program or its functionality
provided by or incorporated in the PIM.

As will be understood by those skilled in the art, the PIM
may return partial start commands, for example, excluding
parameters or parameter values. As will be understood by
those skilled in the art, the PIM will be able to derive the start
command for a job that has completed its processing in a
given address space as long as the relevant output logs have
not been deleted.

Embodiments of the invention are arranged to enable the
derivation of the start command for started task running or
completed in an address space. This enables a user to identify
an address space and easily instruct the stop and restart of the
relevant program, process, procedure or job. Furthermore, if
an address space needs to be cloned, mirrored or otherwise
replicated, the relevant start command can be efficiently, fully
and accurately identified automatically. Replication is com-
monly used to support vertical scaling and rollover failsafe
tolerance in virtual address spaces.

As will be understood by those skilled in the art, embodi-
ments of the invention may be applied to any suitable oper-
ating system and are not restricted to the z/OS operating
system. For example, embodiments of the invention may also
be applied to earlier versions of the z/OS operating system
such as OS/360, OS/370 and OS/390® (0S/390 is a trade-
mark of International Business Machines Corporation, regis-
tered in many jurisdictions worldwide) in addition to any
other suitable operating system.

It will be understood by those skilled in the art that the
apparatus that embodies a part or all of the present invention
may be a general purpose device having software arranged to
provide a part or all of an embodiment of the invention. The
device could be a single device or a group of devices, and the
software could be a single program or a set of programs.
Furthermore, any or all of the software used to implement the
invention can be communicated via any suitable transmission
or storage means so that the software can be loaded onto one
or more devices.

While the present invention has been illustrated by the
description of the embodiments thereof, and while the
embodiments have been described in considerable detail, it is
not the intention of the applicant to restrict or in any way limit
the scope of the appended claims to such detail. Additional
advantages and modifications will readily appear to those
skilled in the art. Therefore, the invention in its broader
aspects is not limited to the specific details of the representa-
tive apparatus and method, and illustrative examples shown
and described. Accordingly, departures may be made from
such details without departure from the scope of applicant’s
general inventive concept.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-

10

15

20

25

30

35

40

45

50

55

60

65

8

netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of

US 9,250,982 B2

9

manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the drawings illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The invention claimed is:
1. A method for automatically deriving a command for
starting a program, said method comprising the steps of:

receiving, by a computer, a user command identifying an
address space, wherein the address space is a location in
a memory of the computer;

identifying, by the computer, the program in said address
space;

20

25

10

searching data logged by an operating system of the com-
puter as a result of processing said identified program to
identify a start command for initiating processing of said
identified program; and

outputting said identified start command.

2. A method according to claim 1, wherein said searching
is performed only for individual user started programs.

3. A method according to claim 1, wherein said searching
is omitted for programs associated with batch jobs.

4. A method according to claim 1, wherein said program is
identified by a unique identifier.

5. A method according to claim 4, wherein said identifier
comprises data indicating whether the associated program is
a user started program or a batch program.

6. A method according to claim 1, wherein said logged data
comprises a set of instructions provided for initiating the
processing of said program in said address space.

7. A method according to claim 6, wherein said set of
instructions is provided in a job control language.

8. A method according to claim 1, wherein said logged data
comprises a set of processing messages reporting processing
steps in the processing of said program in said address space.

9. A method according to claim 1, further comprising the
steps of:

searching said logged data to identify a set of parameters

corresponding to said start command; and

outputting any identified set of parameters in association

with said identified start command.

10. A method according to claim 9, further comprising the
steps of:

searching said logged data to identify the assignment of

values to said set of parameters; and

outputting any identified parameters values in association

with said set of parameters.

11. A method according to claim 1, wherein said address
space is a virtual address space.

12. A method according to claim 1, wherein the processing
of said program is managed by a job entry subsystem.

13. A method according to claim 1, wherein said operating
system is Z/OS.

